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Abstract

This is a manual for the C++ template library igpm_t_1ib providing
i) a vector class (tvectorm),

ii) a multidimensional index class (tmultiindex) and several sup-
porting classes for multidimensional access (tlevelmultiindex,
tpackedltmi, tmultirange),

iii) various hash-table classes (thashmap, thashmap_linked, thash-
map_linked one) and

iv) a memory management class (tmemheap).

These classes are designed in view of applications to local multi-scale
transformations. We outline the design criteria from algorithmic re-
quirements by means of an example and explain how to realize it using
the library classes.
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1 Introduction

JFrom a theoretical point of view numerical algorithms are usually designed
and analyzed with respect to efficiency and accuracy. Here the complexity
of the algorithm at hand is usually measured in terms of floating point op-
erations. In practice, however, the efficiency of the code will also depend on
the selected data structures and the underlying memory management.
These ingredients are crucial because they have to preserve the theoretical
complexity in order to provide a reasonable scaling of the algorithm. Oth-
erwise the time used for data management dominates the overall time of
the program. For instance, a mathematical algorithm of order O(n), e.g.
thresholding a set with cardinality n might behave like O(nlogn) because
internally the container chosen to represent the set sorts its data whenever
an element is erased. Therefore one rarely can use a given data structure as
a black box without knowing some internal details. Consequently the data
structures should not be designed independently from their application.
This motivated the development of the specific template library igpm_t_1ib
which in particular can be used for applications containing local multi-scale
transformations. These are used in the context of adaptive schemes based
on multi-scale decompositions, see e.g. [BKV].

Due to the nature of adaptivity the most important data structure is an
efficient index management for sparse data. Section 2 explains why in our
context different types of hash-tables seem to be the most appropriate. Sev-
eral supporting data structures are necessary to realize the adaptive schemes
described in [M], [BKV]. Those with a close relationship to the hash-tables
are contained in the class library igpm_t_1ib as well. The main data struc-
tures are

a vector class with an arbitrary but fixed dimension, see tvector_n,

a multi-dimensional index class containing at least a multi-index or a
multi-index and a level and additionally blocks of multi-indices repre-
senting supports, see tmultiindex, tlevelmultiindex and the class
tmultirange,

e a compressed version of such an index class, see tpackedlmi<2>,

e various hash-map classes by which elements can be stored in an un-
ordered way providing fast access, see thashtab, thashtab_linked
and thashtab_linked_one, and

e an efficient memory management where memory space for variables of
a given type is fast provided and freed, see tmemheap.



This paper is structured as follows: In Section 2 we briefly outline the frame
for a local multi-scale transformation applied to a sequence of mean values.
Additionally we present the resulting algorithms and derive design criteria for
appropriate data structures. A complete description of all classes contained
in igpm_t_1ib can be found in Section 3. Section 4 describes the realization
of the adaptive algorithm from Section 2 in terms of library classes. The
design of the classes as well as the implementation of certain classes hide
some special C++ features which are explained in Section 5. This section
refers to the more advanced and interested C++ programmer and can be
ignored if one only wants to use the library.

We like to thank Frank Bramkamp, Thomas Schlinkmann and Michael
Konik for their fruitful ideas during the first design process. Last but not
least we thank Arne Barinka for proof-reading and giving helpful comments
on the different versions of this script.
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Figure 1: Sequence of nested grids

2 Example: Local Multiscale Transformation

In this section we summarize the ingredients by which a sequence of averages
can be successively decomposed into a sequence of coarse scale averages and
details corresponding to a nested grid hierarchy. By means of the details an
adaptive grid, in particular, a locally refined grid with hanging nodes, can be
determined. This tool can be incorporated to finite volume methods in order
to accelerate the computation. The frame of the concept and its analytical
investigation as well as its application is presented in [M].

First of all, we briefly outline the multi-scale analysis and present the
algorithms for the local multi-scale transformation. From these algorithms
we deduce the design criteria for the template classes to be described in the
sequel.

2.1 Multi-scale Setting for Averages

Starting point is a sequence of nested grids G; := {Vjrtrer,, J =0,..., L,
by which a computational domain Q C R? is decomposed into cells. Here
the coarsest grid is denoted by 0 and the finest grid by L. Each grid §;
is assumed to be a partition of 2, i.e., ) = Ukelj Vik and the cells of two
neighboring levels are nested, i.e., V = UreMgk Vis1r, k € I;. The index

sets M?Jg C I;41 correspond to the new cells on level j +1 resulting from the
refinement of the cell V; ;. In particular, these refinement sets are assumed
to be pairwise disjoint, i.e., M?,k N ./\/l;{k, = for k # K, kK € I;, and
they build a partition of the index set [, i.e., Ukelj M?,k = I;41. A simple
example for a nested grid hierarchy is shown in Figure 1 where a coarse grid
is successively refined with increasing refinement level. In our applications
we confine ourselves to structured grids and uniform dyadic refinements, i.e.,



#M?,k = 2. Moreover, we only consider a finite domain © and, hence,

=F# ]]‘ < 0.

By means of the grids G; we introduce the sequences of averages u; :=
{1 1 }rer, corresponding to a scalar, integrable function v € L'(Q2,R) as the
inner product u; = (u, @;r)r2(q) of v with the L' -normalized box function
wirp(x) = |V,7k|—1XVJ7k(az), x € Q, where |V, ;| := fV],k L dx denotes the cell
volume.

The nesting of the grids as well as the linearity of the integration operator
imply the two-scale relation

. Vi .
D DRI (2.)

© Vik :
TEM],k rEMJk

i.e., the coarse—grid average can be represented by a linear combination of
the corresponding fine—grid averages. Consequently, the averages can be
successively computed starting on the finest level. However it is not possible
to reverse this process, i.e., determine the fine—grid averages by the coarse—
grid averages only. Since information is destroyed by the averaging process
(2.1), we have to store these information by means of additional coefficients.
In analogy to the averages, these can be represented as inner products d; ;. =
(U, vj ke)r2() of the function u with appropriate wavelets ¢;., e € E* :=
{1,...,2¢=1}, keI, 5=0,...,L—1. The wavelets exist provided that the
linear spaces S; := span{y,x ; k € I;} are nested, i.e., S; C Sj11. From the
nesting we conclude the existence of the complement spaces W, := S;11/95;.
Hence, the wavelets can be interpreted as a basis for the complement spaces,
e, W, :=span{v;r. ; k € I;, e € E*}. Since the box functions and the
wavelets are assumed to be linearly independent, there exists a two-scale
relation for the details, i.e.,

djre = Z mrkuj-l-lr (2.2)

rEMik

with the index sets M%, C [;. On the other hand, we deduce from the
change of bases the existence of a converse two—scale relation

g = Y Griiet Y Y Gidine (2.3)

0 e
regjyk ecF* regjyk

with the index sets Q;k C I.
So far, the wavelets are not yet determined. Since they build any basis for
the complement spaces, they are not unique. This degree of freedom is made



use of in the construction of an appropriate wavelet basis which is adapted to
the problem at hand. In principle, there are four design criteria, namely, (i)
the two—scale transformation (2.1) and (2.2) can be reversed by (2.3) and vica
versa, i.e., the relations are equivalent, (ii) the L?*-normalized bases satisfy
a so—called Riesz property, i.e., they are [y;—stable, (iii) the basis functions
are locally supported, i.e., the number of indices in the index sets M¢,, G7,,
e € F:= E*U{0}, is uniformly bounded and much smaller than N; and (iv)
the wavelets provide good approximation properties, i.e., the inner products
(P, ¥jke)12 (0 vanish for all polynomials with degree less than M. Here we
will not present the technical details for constructing an appropriate wavelet
basis but refer to [M].

The main objective of the multi-scale decomposition determined by suc-
cessively applying (2.1) and (2.2) is the construction of an adaptive grid. For
this purpose, we introduce the set of significant details

Dre :={(j,k,e); |djnel >e5, e€ E", kel j€{0,...,L —1}}

by which all details d; ;. smaller than a prescribed threshold value ¢; are
discarded. By means of this set we define the locally refined grid with hanging
nodes, see e.g. Fig. 2, corresponding to the index set Gr e C Uf:o I; such
that ) = U(j,k) ‘/j7k‘

€.

Figure 2: Locally refined grid with hanging nodes

To this end, we traverse through the levels starting on the coarsest grid
level and refine a cell V;; as long as there exists a significant detail, i.e.,
(J,k,e) € Dy e for at least one e € E*. This procedure works provided the
set of significant details is graded, see [M] for details.

For later use we introduce the local index sets

Lie :={k; (5,k) €Gre} C1l;, Jie:={k; (j,k,e) € Dre, e€ E"} C I;.



2.2  Algorithms for Local Multi-scale Transformations

We notice that the complexity of the index sets G, ¢ and Dy, ¢ corresponding
to the adaptive grid and the set of significant details, respectively, can be
much smaller than the number Ny, of cells corresponding to the finest level.
In the sequel, we will present algorithms by which the multi-scale transfor-
mation (2.1) and (2.2) as well as its inverse (2.3) can be locally realized,
i.e., we perform the change of bases between the local bases {¢or ; k €
LYU{tre; (4, k,e) € Dre}t and {p;r; (7, k) € Gre}. The objective is the
construction of algorithms where the memory size and the number of floating
point operations correspond to # Gr e and # Dy, g, respectively.

To this end, we have to specify the index sets. Here we only consider a
dyadic grid hierarchy of structured grids where the cells on each level can be
enumerated by a multi-index, i.e.,

d
Li=@{0.N; -1} CNy,  j=0,....,L
=1

with N;; = 2N,_y,;. ;From the dyadic grid refinement we deduce the refine-
ment sets

e={2k+i; i€k}
where / := {0,1}% ~ {0,...,2971} E*:= E\{0}. According to the wavelets

constructed in [M] the remaining index sets are determined by
o MS =M, = QL {26k 2l +4s + 1}, k€1, e € B7,
0 0% = QL Alitksas- - Lifrayay + 25 +1}, k € Iy,
¢ G5 =0 =1{lk/2]}, kK€ [j11, ec E

with the integer

0 5 OSkZSS—l
l]‘7k: ki—S 5 SgkiSN]ﬂ'—l—S
Njﬂ'—l—QS y N]‘7i—8§ki<N]7Z—1

where s is a parameter in the wavelet construction. In addition, we need the
following index sets

o« ML= {[k/20} k€ L,

*,e *, d 70 71 %
[ ] MJJC = Mj,li = ®i:1{l]7|_ki/2j7' . '7lijki/2J}7 k € []+17 eck s



¢ Q;}S = ®?:1{273,ki7 .. 727]17]% + 1}, k - []‘,
o g;}::g;}i:{Qk—l-i; teFE}, kel, ec

with the integers

ZO B 0 , 0<k <2s

Dok T ki—S R 28—|—1§k2§N]72—1 ’

-1 . kZ—I-S 5 ngiSN]ﬂ'—QS—Q
L Njﬂ'—l R Nj7i—28—1§ki§Nj7i—1

These index sets can be interpreted as the supports determined by the non—
vanishing elements of a column or a row corresponding to the mask matrices
M. = (m))ren i ker, and G = (g2 )rel; kel g -

By means of the index sets the algorithms for the local transforma-
tions are then determined by. First of all we consider the encoding algo-
rithm. This algorithm needs the following input information (i) the number
of refinement levels L, (ii) the local index sets I, e, j = 0,..., L, repre-
senting the adaptive grid Gy e and (iii) the corresponding sequences of lo-
cal averages (ﬁ]‘7k)k€[]€, j = 0,..., L. Then the following output is pro-
vided by the encoding algorithm (i) the local index sets of significant details
Jie, 7=0,...,L—1, (ii) the corresponding sequences of significant details
(dj,k,e)kEJJVE,EEE*v J=0,...,L —1, and (iii) the averages (tok)ker, of the
coarsest grid. Notice that the set of significant details Dy, ¢ is not necessarily
graded and it might include non—significant details.

Algorithm 2.1 (Local multi-scale transformation)
for y = L — 1 downto 0 do

LU= Uer,, . M, Ul = Urer,, M,
2. ﬁj,k = Erengk mfjgc ﬁ]‘+17r, kc UJO

3. Piy1 = Ukerl M},k/[j+1,€

4o Ujprge = Eregik gi:(l)c Ujr, k€ Pjp1

J. dj,k,e = EreM;yk mf,’jcﬁme, k c U]17 ec k”
6. if k¢ U]Q U Jje then delete mf,’sc, r e Mg{k

9



7. itk ¢ Ul UUep,,, Gl then delete miS, r € M}, e € B~

Finally we consider the decoding algorithm. This algorithm needs the fol-
lowing input information (i) the number of refinement levels L, (ii) the local
index sets of significant details J; ¢, j =0,..., L — 1, (iii) the corresponding
sequences of significant details (dj7k7e)kejjs7eeE*7 J=0,...,L—1and (iv)
the averages (1o k)ker, of the coarsest gridy. Notice that the set of significant
details Dy e has to be graded, see [M]. Then the following output is pro-
vided by the decoding algorithm (i) the local index sets [, e, 7 =0,...,L,
representing the adaptive grid Gr e and (ii) the corresponding sequences of
local averages (ﬁ]‘7k)kejjys, 7=0,..., L.

Algorithm 2.2 (Local inverse multi-scale transformation)
[6'— = [0
for j=0to L-1do

1. [;r+1 = UleJJﬁ g;fll

2. ﬁj+1,k = Eregik gf;’,?c ﬁj,r + ZeeE* Eregjlyk QZ«Z dj,e,rv k e [;—4—1
315 = Uke[;ﬁ,l M;’IS, Lie =7 /I and delete i, k € I;

4. for k ¢ ]]T"_I_l N{k : gf;’f,)c exists, r € g;{,c} then delete gf;’gc, rc ggk

5. for k ¢ ]]7"_|_1 Nn{k : gf,z evists, 7 € GFy, e € £*} then delete gf;’jc, r e
G5

2.3 Algorithmic Requirements and Design Criteria

In the previous sections we outlined the core ingredients of a local multi-scale
transformation and its inverse. The complexity of the corresponding algo-
rithms is optimal in the sense that the number of operations is proportional
to the number of unknowns, i.e., #Dr e and # Gr e, respectively. We are
now concerned with the design of an optimal code, i.e., the memory require-
ments and the CPU time are proportional to the same complexity of the local
algorithms. To this end, we consider the Algorithms 2.1 and 2.2 by which the
local multi-scale transformation and its inverse are performed. From these
we deduce the following demands:

e The local transformations are performed level by level. Therefore data
structures by which the local averages and the significant details are
stored have to maintain the level information.

10



e For each level we have to collect the indices of cells to be refined or
coarsened. Therefore we need a data structure for index sets.

e For the computation of the local (inverse) two—scale transformation
(2.1) — (2.2) and (2.3), respectively, we have to determine the sup-
ports of the mask matrices Mo, G0 and M., G, e € E*. The
summation is then performed on a column of these matrices. Obvi-
ously, we never access a single element of the matrices but a column
corresponding to the non—vanishing entries indicated by the support.
These data group has to be maintained by a data structure.

o Performing the local transformations we have to check whether a matrix
column or a local average as well as a significant detail exists, i.e., this
information has already been computed and has been stored.

e The data provided by the local transformations have to be inserted into
the data structure or have to be deleted from a data structure.

o If we access details d; g e, we always consider all wavelet types indicated
by e € E*.

e The algorithm is independent of the spatial dimension d and the num-
ber of conservation laws m. Therefore the data structures have to be
designed flexible with respect to this parameters.

JFrom these algorithmic requirements we deduce the design criteria for
an appropriate data structure for our sparse data distribution. This data
structure should provide

o fast random data access, e.g. check whether an element already exists,

o fast insert and delete of elements, i.e., copying and sorting of elements
within the data structure should be avoided,

o fast dynamic memory allocation and extension, since the memory re-
quirement is not known before but can only be approximately predicted
and

o support group information, i.e., connections of data corresponding to a
common level, should be maintained.

Obviously, we are facing two main problems arising in the implementa-
tion. These are (i) dynamic memory operations and (ii) fast data access with
respect to inserting, deleting and finding an element:

11



Dynamic memory operations. Due to refinement and coarsening op-
erations in the algorithm, memory space for new elements or freeing unused
elements are frequently performed and therefore should be very fast. Since
the memory operations provided by the programming language are univer-
sally, they can be made much more efficient if we take into account that our
data are of the same type. In particular, this can be realized by allocating a
sufficiently large memory block and manage the memory requirements by the
algorithm with a specific data structure. Since the overall memory demand
can only be estimated, the data structure should provide dynamic extension
of the memory.

Fast data access. For instance, lists might be considered as a container
for fast inserting and deleting elements. However, finding an element requires
the search in the whole list from its beginning until the position of the element
is found. On the other hand a fast way of finding an element by means of an
index is an array. But inserting and deleting elements in an array requires
copy operations. However, if one does not need to maintain any ordering
in the data, then other data structures, e.g. hash-maps, might be a good
alternative.

Therefore the fundamental data structures we use are hash-tables. For
the management of the local index sets we introduce an index class for multi-
indices which naturally arises in the context of structured grids. This class is
inherited from a special vector class efficiently supporting short vectors with
only a few components.

12



3 Template Classes

In this section one will find specifications of all classes from igpm_t_1ib.
Each class description has the following structure:

e Introduction

e Example

e Data Representation
e (Class Description

— Template Arguments, Public Types and Constants
— Constructors and Destructor

— Data Access

— Supporting Functions

— Operators, Input and Output

— Iterators and Iterator Class Description

— #DEFINE’s and FErrors
e Comments

The topics Template Arguments and Public Types and Constants are dis-
cussed together because each template type is memorized by the class with
a typedef and each template integer is saved in an enum. So the descrip-
tions of the template arguments and the types are the same. For a reason to
memorize these arguments in a class refer to Section 5.

If in Constructors and Destructor nothing is said about a Destructor,
simply none exists.

Sometimes we refer to an index type. By this we mean an integer value
but not necessarily an unsigned int or signed int. It could even be a
larger or shorter integer type, with respect to the used bits, or even a more
complex data type which behaves like an integer.

13



3.1 Vector: tvector.n

The class tvector n is designed to store a fixed amount of elements of the
same type. The most common vector operations like addition, scalar multi-
plication, and others are provided.

Unlike other vector classes known to the author, tvector n possesses a spe-
cial unroll mechanism based on recursive template instantiation. This allows
fast access to the data stored in tvector_ n especially if the number of ele-
ments is small. For details including a comparison with expression template
based classes like e.g. the Blitz library see Section 4 and 5.

The class is declared in igpm_tvector_n.h and the associated test program
is igpm_tvector_n.test.cpp.

3.1.1 Example

[01] #include "igpm_tvector_n.h"

[02] /...

(03] typedef tvector_n<double,3> euler;

[04] euler q1,92,q3;

[05] /...

[o6] ql = g2 + 2%q3;

[07] /...

o8] for (euler::iterator it=ql.begin();it!=ql.end();++it)
[09] qifit] = 1; // equivalent: q1[*it] = 1;

o [04] declares three vectors ¢l, ¢2, ¢3 without initialization.
e [06] stores the sum of ¢2 and twice ¢3 into ¢1.

e [08],[09] traverses ql and stores 1 in every coefficient of the vector.

3.1.2 Data Representation

Each vector of type tvector n holds n coefficients of one given element type.
In the example above n equals 3 and the used type is the floating point type
double. So the size in bytes of a single vector is n times the size of the used
element type. There is no room needed for internal memory or size manage-
ment because the vector cannot grow or shrink and its length is handled by
the class declaration itself. This means in particular, that different lengths
and/or different types instantiate different classes. A representation of the
memory used by one of the vectors of the example looks as follows:

14



A tvector_n<double, 3>:

—_n
double [0]
double [1]
double [2]
-— n -+ L1

n memory address

L1 = 3xsizeof (double)

3.1.3 Class Description

Template Arguments, Public Types and Constants:

[o1] template <typename DBL, int DIM>
[02] class tvector_n

(03] /...

[04] typedef DBL dbl;

[05] enum { dim = DIM };

e DBL and dbl are the types of the vector elements.

e DIM and dim are the dimension of the vector. dim acts like a constant
integer class member.

Constructors and Destructor:

[01] tvector_n();
[02] tvector_n(const tvector_n& v);
(03] tvector_n(const dbl p[dim]);

e [01] is the standard constructor, it is empty.
e [02] is the copy constructor.

e [03] is implemented to initialize a vector from a given field of at least
dim entries.

15



Data Access:

[01] const dbl& operator[](unsigned int i) const;
[02] dbl& operator[](unsigned int 1i);

(03]

[04] dbl& operator[] (const iterator& it);

[05] const dbl& operator[](const iterator& it) const;

e [01],[02] realize read and write access by means of an integer index.

e [04], [05] realize read and write access by means of multi-index index.

Supporting Functions:

[01] unsigned int length();

[02] unsigned int size();

(03] unsigned int max_size();

[04] unsigned int memoryuse() ;
[05]

[06] dbl Norm2() const;

[o7] dbl Norm2sqr() const;

[o08] dbl euclidean_norm() const;
[09] dbl Norminf() const;

[10]

[11] void DoNorm2();

[12] tvector_n DoNorm (const tvector_n& v);
[13]

[14] static const char* version();
[15] static const char* date();

e [01]-[03] return the length of the vector, i.e.,, dim.

o [04] returns the used bytes by the vector, i.e.,, length times size of the
used element type.

e [06],[08] calculate the euclidean norm ||v||, for a vector v.
e [07] calculates the square of the euclidean norm |[v]|3 for a vector v.
e [09] calculates the infinity norm ||v||. for a vector v.

e [11] normalizes a vector v with its 2-norm, i.e.,, v := 1/||v||2 * v.

16



e [12] calculates the normalized vector with respect to its 2-norm with-

out changing the original vector.

e [14] returns current class version.

e [15] returns last modification date.

Operators, Input and Output:

[01]
[02]
[03]
[04]
[05]
[06]
[o7]
(o8]
[09]
[10]
[11]
[12]
[13]
[14]
[15]
[16]

[17]

[18]

[19]

[20]

[21]

[22]
[23]

[24]

[25]

bool operator==(const dbl& d) const;
bool operator==(const tvector_n& v) const;
bool operator!=(const dbl& d) const;
bool operator!=(const tvector_n& v) const;

tvector_n&
tvector_n&

tvector_n&
tvector_n&
tvector_n&
tvector_n&
tvector_n&
tvector_n&

operator=(const dbl& d);
operator=(const tvector_n& v);

operator+=(const
operator-=(const
operator*=(const
operator/=(const
operator+=(const
operator-=(const

dbl& d);
dbl& d);
dbl& d);
dbl& d);
tvector_n& v);
tvector_n& v);

friend tvector_n operator+(const

friend

friend

friend

friend

friend

friend
friend

friend

friend

tvector_n

tvector_n

tvector_n

tvector_n

tvector_n

tvector_n

const
operator+(const
const
operator+(const
const
operator-(const
const
operator-(const
const
operator-(const
const
operator-(const

tvector_n&
tvector_n&
tvector_n&
dbl& d);
dbl& d,
tvector_n&
tvector_n&
tvector_n&
tvector_n&
dbl& d);
dbl& d,
tvector_n&
tvector_n&

dbl operator*(const tvector_n& vi,
const tvector_n& v2);
tvector_n operator*(const dbl& d,

const

tvector_n&

tvector_n operator*(const tvector_n&

const

17

dblg 4);

v2);
vi,

vi);
vi,
v2);
vi,

vi);
vi);

vi);
vi,



[26] friend tvector_n operator/(const tvector_n& vi,
const dbl& d);

[27] friend tvector_n operator/(const dbl& d,
const tvector_n& vl);

[28]

[29] friend std::istream& operator>>(std::istream& is,
tvector_n& v);

[30] friend std::ostream& operator<<(std::ostream& os,

const tvector_n& v);

e [01]1-[04] check vectors for equality or inequality with other vectors
respectively compare all coefficients of a vector with one value.
This operations make only sense for elements where equality is defined,
for instance all kinds of integers. They are senseless for floating point
types because in this case you have to check equality by distances or
norms.

e [06],[07] copy another vector or set all coefficients to a given value.
e [09]-[14] are the defined unary operations.

o [16]-[27] are the defined binary operations; in particular [23] returns
Norm2sqr ().

e [29],[30] are the usual input and output operators. There are no
other delimiters between the coefficients of a vector than a space, so
one is able to read a sequence of values as a vector.

Iterators and Iterator Class Description:

[01] const iterator begin() const;
[02] const iterator end() const;

e [01] returns an iterator pointing to the first element of a vector.

e [02] returns an iterator pointing behind the last element of a vector.

[01] class iterator

[02]

[03] iterator();

[04] iterator(const unsigned int n);
[05]
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[o6] bool operator==(const iterator& it) const;

[o7] bool operator!=(const iterator& it) const;
(o8] const iterator& operator++();

[09]

[10] const unsigned int operator*() const

e [03] is the default constructor, the iterator points to the first element.
e [04] is a constructor for an iterator pointing to the n’th element.

e [06],[07] check iterators for equality respectively inequality.

e [08] is the prefix increment operator so this is a forward only iterator.

e [10] returns an internal index counter, so that using an iterator as an
index is possible, cf. the Example. 3.1.1.
3.1.4 #DEFINE’s and Errors

#DEFINE’s:

e IGPM_TVECTOR_N_DEBUG (off). If set to on, op[](index) performs an
index check.

e IGPM_TVECTOR_N_TEMPLATEUNROLL (on) unrolls all loops per template.
If set to off, one has to write additional code for all operators.

Errors:

o If IGPM_TVECTOR_N_DEBUG is defined, a wrong index in operator[]
gives:
"ERROR (tvectormn): wrong index” and exit(-1).

3.1.5 Comments
e To avoid confusion there are no further constructors defined. One could
for instance think of

[01] tvector_n(const dbl& d) { (*this)[0]=d; }

Such constructors are often used in variable length vector classes to
define a start length or to initialize all of the coefficients of a vector
with a value. Because of the fact that the default constructor is empty,
a construct like
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[01] tvector_n<type,len> v; v=0;

is equivalent.

e The function Norminf () internally uses the fabs() function to de-
termine whether an element is maximal or not. If you like to use
other types for the vector class than double or float and the function
Norminf (), you have to modify the vector class and add a template
fabs () or abs() function.!

o There is an additional internal vector class tvector_d without the com-
mon operators and without template unrolling. It can be used for larger
fixed size vectors instead of a simple C array.

!There will be a helping class called tnum in one of the next versions.
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3.2 Stack: tstack.o

The class tstack_ o is designed to work simultaneously like a stack and like a
vector with respect to access, i.e., it is possible to push and pop elements to
and from the end and also to access elements by means of an index. Hence
it behaves like an increasing and decreasing vector.

The class is declared in igpm_tstack_o.h and the associated test program
is igpm_tstack_o.test.cpp.

3.2.1 Example

[01] #include "igpm_tstack_o.h"
[02] /...

(03] tstack_o<integer> s;

[04] /...

[o5] s.push_back(2); // (s[0]==2)
[o6] s.push_back(4); // (s[1]==4)
[07] /...

o8] s.pop_back(n) ; // (n==4)
[09] s.pop_back(n) ; // (n==2)
[10] /...

[11] s.clear();

e [03] declares one stack variable, without initialization.
e [05],[06] push two values on top of the stack.
e [08],[09] pop two values from top of the stack.

o [11] clears the stack, i.e., the stack is empty.

3.2.2 Data Representation

Each stack class is instantiated with a given element type. A stack variable
has to reserve space for a number of elements which will be pushed on top of
the stack. This block of memory can be enlarged so there is no a priori size
limit. All in all a stack variable has three internal counters and one pointer
to the needed memory. In memory the variable s from the example above
looks as follows:
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A tstack_o<integer>:

— —m
SP=2 integer [0]=2
SP Max integer [1]1=4
Memory Add integer [2]
Memory*=m
--n—l—L1
integer [Max-1]

— m+ Ly
n, m memory addresses

L1 = 3xsizeof (integer)+sizeof (element*)

Lo =SP Max*sizeof (element)

3.2.3 Class Description

Template Arguments, Public Types and Constants:

[o1] template <typename ELEM>
[02] class tstack_o

[03] /...

[04] typedef ELEM element_type;

e ELEM and element_type are the type of the stack elements.

Constructors and Destructor:

[o1] tstack_o(size_type nStartSz = default);
[02] “tstack_o();

e [01] is the standard constructor. Note that, because of the default size
the stack is never in an undefined state.

e [02] is the standard destructor. It frees the used memory blocks.

Data Access:

[o1] element_type& operator[] (unsigned int 1i);

[02] const element_type& operator[](unsigned int i) const;
(03]

[04] void push_back(const element_type& e);

[05] void pop_back(element_type& e);

22



e [01],[02] realize read and write access by means of an integer index.

e [04] pushes an element on top of the stack. After this operation the

element is also accessible with s[s.length()-1],if s denotes the stack
variable.

e [05] pops an element from top of the stack.

Supporting Functions:

[01]
[02]
[03]
[04]
[05]
[06]
[o7]
(o8]
[09]
[10]

unsigned int length() const;
unsigned int size() const;
unsigned int max_size() const;
unsigned int memoryuse() const;

void clear();
void reserve(size_type nlNew);

static const char* version();
static const char* date();

[01], [02] return the actual extent of the stack, that is the stack
pointer.

[03] returns the maximal size of the stack. If the stack grows further
more memory will be allocated.

[04] returns the used bytes by the stack, i.e.,, length times size of the
used element type.

[06] sets the stack pointer to 0, i.e., empties the stack.

[07] makes sure that there is room for at least nNew elements on the
stack without forcing an internal re-growth. For instance if one plans
to push 3 elements into the stack and calls s.reserve(s.length()+3)
before, one can be sure that there is space for 3 elements and there will
be no error generated between the push operations. If there is no free
memory left one will get the error in reserve.

[09] returns current class version.

[10] returns last modification date.
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Operators, Input and Output:
Iterators and Iterator Class Description:

e none;

3.2.4 #DEFINE’s and Errors

#DEFINE’s:

e IGPM_TSTACK_O0_DEBUG (off). If set to on, op[](index) performs an
index check.

Errors:

o If IGPM_TSTACK_O_DEBUG is defined, a wrong index in operator[]
gives:
"ERROR (tstacko): wrong index” and exit(-1).

e No available memory in tstack o(...) or push back(elem) gives:
"ERROR (tstacko): out of memory” and exit(-1).

3.2.5 Comments

o Be aware of the following fact: while the push operation is a copy of the
element by means of the copy operator of the elements class, the copy
operation that will be performed on an element in the stack during the
enlargement process of the stack is a binary copy. The enlargement
takes place if the stack grows beyond max_size and is implemented by
a call to realloc.

o Because the stack is not designed for vector operations there are no
operators defined. Up to now there was no need to write or read a
stack in or from any stream so this operations are still undefined. The
same is true for iterators.
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3.3 Multi-d: tmultiindex

The class tmultiindex is designed in order to store a d dimensional multi-
index. It is inherited from tvectorn and specialized for d = 1,2,3. In
contrast to tvector n there are constructors with exactly d arguments and
there is an additional operator which maps a multi-index to an unsigend int,
which is important for using this class as a key in thashmap.

The class is declared in igpm_tmulti.h and the associated test program is
igpm_tmulti.test.cpp.

3.3.1 Example

[01] #include "igpm_tmulti.h"

[02] // 2 dimensional implementation

(03] typedef tmultiindex<2,unsigned int> multiindex;
[04] multiindex mi1(1,2), mi2(2,3), mi3(mil+mi2);

e [04] declares three multiindex variables. Note that such a variable is
still a vector, so vector addition in the initialization of mi3 is valid.

3.3.2 Data Representation

Because tmultiindex is a tvector.n the data representation is the same,

cf. 3.1.2.

3.3.3 Class Description

Template Arguments, Public Types and Constants:

[o1] template <int DIM, typename INDEX=unsigned int>
[02] struct tmultiindex { }; // empty!

(03]

[04] // specialization of tmultiindex for d=1,2,3
[05] template <typename INDEX>

[06] struct tmultiindex<d,INDEX>

: public tvector_n<INDEX,d>

e DIM is the dimension of the vector.
e INDEX is a index type.

e For public types and constants see tvector n.
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Constructors and Destructor:

[01] tmultiindex();

[02a] tmultiindex (INDEX nO); // d=1
[02b] tmultiindex (INDEX nO, INDEX ni); // d=2
[02c] tmultiindex (INDEX nO, INDEX ni1, INDEX n2); // d=3
[03] tmultiindex(const tvector_n& v);

e [01] is the standard constructor, it is empty.

e [02a]-[02c] are the constructors corresponding to the dimension d
with d arguments.

e [03] initializes a multi-index from tvector n, so all operations result-
ing in a tvector n are available for tmultiindex.

Data Access:

Supporting Functions:

[01] static const char* version();
[02] static const char* date();

e [01] returns current class version.
e [02] returns last modification date.

e For further functions see tvectorm.

Operators, Input and Output:

[o1] tmultiindex& operator=(INDEX n);
[02] operator unsigned int() const;

o [01] sets all coefficient to n.
e [02] converts the tmultiindex to an unsigned int.

e For further operators see tvector n.

Iterators and Iterator Class Description:

e See tvectorn.
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3.3.4 #DEFINE’s and Errors

#DEFINE’s:

e IGPM_TMULTIINDEX_DEBUG (off). If set to on, operator unsigned int
performs an index check.

Errors:

e If IGPM_TMULTIINDEX_DEBUG is defined, a wrong index in operator
unsigned int gives:
"ERROR (tmultiindex): argument greater than maximum’.

3.3.5 Comments

o If you use more complex types for INDEX than an unsigned int or
other generic data types it makes sense to change concerned parameters
to const INDEX&.
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3.4 Multi-d: tlevelmultiindex

The class tlevelmultiindex is a compound of a level type and a multi-
index. It is to store a level and a multi-index simultaneously in what will be
called levelmultiindex. Like the tmultiindex class there is a mapping to an
unsigned int and a so called [link function, so this type can be used as a
key in thashmap linked.

The class is declared in igpm_tmulti.h and the associated test program is
igpm_tmulti.test.cpp.

3.4.1 Example

[01] #include "igpm_tmulti.h"

[02] // 2 dimensional implementation

(03] typedef tmultiindex<2,unsigned int> multiindex;

[04] typedef tlevelmultiindex<multiindex> levelmultiindex;
[05] levelmultiindex 1mi(1l,multiindex(2,3));

e [05] declares a levelmultiindex variable and it is initialized with a
level and a multi-index.
3.4.2 Data Representation

The variable 1mi from the example looks as follows:
A tlevelmultiindex<multiindex>:

—n
uns.int/level=1

uns.int [0]=2

uns.int [1]=3

— n + 3*xsizeof (uns.int)
n memory address

3.4.3 Class Description

Template Arguments, Public Types and Constants:

[01] template <typename MULTIINDEX,
typename INDEX=unsigned int>

[02] struct tlevelmultiindex

(03]

[04] typedef INDEX size_type;

[05] typedef MULTIINDEX multiindex;
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e INDEX and size_type are the index types.

e MULTIINDEX and multiindex are the multi-index types.

Constructors and Destructor:

[01] tlevelmultiindex() { }
[02] tlevelmultiindex(size_type 1, const multiindex& mi);

e [01] is the standard constructor, it is empty.

e [02] initializes a levelmultiindex with a level and a multi-index.

Data Access:

[o1] size_type level;
[02] multiindex index;

e level is the public level variable.

e index is the public multi-index variable.

Supporting Functions:

[o1] size_type link() const;

[o2]

[03] static const char* version();
[04] static const char* date();

e [01] returns level and is used for thashmap linked.
e [03] returns current class version.

e [04] returns last modification date.
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Operators, Input and Output:

01]
[02]
03]

[04]

operator unsigned int() const;

friend ostream& operator<<(ostream& os,
const tlevelmultiindex& 1);

friend istream& operator>>(istream& is,
tlevelmultiindex& 1);

[01] converts a variable of type tlevelmultiindex into an unsigned
int and this function is also used for thashmap.

[03], [04] are the usual input and output operators. There are no
other delimiters between the level and the coefficient of the multi-index
vector than a space, so one is able to read a sequence of elements as a
level and a multi-index.

3.4.4 Comments

e For a compressed version of this class see 3.6, class tpackedltmi.
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3.5 Multi-d: tmultirange

A multi-range is a d dimensional interval of length r. It can be used for
instance to represent a difference stamp in a numerical scheme. The class
tmultirange provides a possibility to get all necessary multi-indices relative
to a given starting point. Therefore the class only needs memory for this
starting point, the calculation of the indices is determined by the class itself.
The advantage in using this multi-range class is the independence of the
given dimension d. If you code it without multi-range the number of loops
depends on d, e.g.

[01] if (1==4) // or #if ...
[02] for (i=0; i<r; ++i) {

[03] cout <<'"index :" << i << endl;
[04] /...

[05] }

[o6] else if (2==d) // or #if ...
[o7] for (i=0; i<r; ++i)

[o8] for (j=0; i<r; ++i) {

[09] cout <<"index :" << 1 << "," << j << endl;
[10] /...

[11] }

[12] // else ...

If one uses multi-range iterators instead to traverses all indices there is only
one loop and the calculation of the next index is hidden in the iterators
operator++.

There are cases where it is necessary to store data to every multi-index in this
multi-range, i.e., there is the starting point and a field of ¢ data elements
behind every possible index, cf. the figure in 3.5.2 and Section 4. The multi-
range class and its iterator class provide easy access to such an array.

The class is declared in igpm_tmulti.h and the associated test program is
igpm_tmulti.test.cpp.

3.5.1 Example

[01] #include "igpm_tmulti.h"

[02] // 2 dimensional implementation

(03] typedef tmultiindex<2,unsigned int> multiindex;
[04] typedef tmultirange<3,multiindex> multirange;
[05]

[o6] typedef tvector_n<unsigned int,2> data;
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[o7]
(o8]
[09]
[10]
[11]
[12]
[13]

[14]

[15]
[16]

[17]

typedef tmultirange<3,multiindex,data> multirangedata;

multiindex mi(1,2);
multirange mr (mi) ;
multirangedata mrd(mi);
/...

for (multirange::iterator it=mr.begin() ;
it'=mr.end(); ++it)
cout << (*it) << "," << it.loopindex()
<< "M << it.linear() << endl;

/...
for (multirangedata::iterator it=mrd.begin() ;
it!=mrd.end(); ++it)
cout << (*it) << "," << mrd[it]==mrd[it.linear()]
<< endl;

[09] declares a 2 dimensional multi-index initialized with (1,2).

[10], [11] declare a multirange and a multirangedata, which are ini-
tialized with the given multi-index.

The difference between a multirange without or with data is only the
second argument in the template instantiation. For the internal coding
refer to 5.

[13],[14] and [16],[17] are loops for the types multirange and
multirangedata to traverse all multi-indices. The output from [14],
the first loop, is:

[o1] 21, 00,0
[02] 22,01, 1
[03] 23,02, 2
[04] 31,10, 3
[o5]-[o8] ...

[09] 43,22, 8

The first multi-index is the starting multi-index plus the second multi-
index, the loopindex (). The last row is just a counter and can be used
to access the data in the multirangedata directly, i.e., in the second loop
in [17] the boolean expression is always true.
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3.5.2 Data Representation

The memory representation of the variable mr from the example above is like
a multi-index, cf. 3.1.2 and 3.3.2.

The data from the variable mrd looks like the right cube in following fig-
ure. The numbers on top are the relative multi-indices. The left box is the
representation of the complete multirange with data.

A tmultirange<3,multiindex,data>:

—n
multii./offset
wl7) o[8] /v[9] data v[0] (0,0)
vl data v[1] (0,1)
(2,0)|(2,1) |(2,2)
==
v[6] data v[2] (0,2)
(1,0) | (1,1) | (1,2)
v[3]
(0’0) (0’1) (0’2) data v[9] (2,2)
- n+ L1
n memory address
I =sizeof (multiindex)+r%sizeof (data)
d =dim multiindex, r =dim multirange
3.5.3 Class Description
Template Arguments, Public Types and Constants:
(011 template <unsigned int DIM, typename MULTIINDEX,

typename ARRAYTYPE=_tmultirange_null,
unsigned int LEN=
_tmultirange<DIM,MULTIINDEX: :dim>: :nPot>

[02] class tmultirange

(03]

[04] enum { range = DIM };

[05] enum { array_size = LEN };
[06]

[o7] typedef MULTIINDEX multiindex;
[o8] typedef ARRAYTYPE array_type;

e DIM and range are the dimension r of the multirange

e MULTIINDEX and multiindex are the multi-index types.
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e ARRAYTYPE and array_type are the data types. If one does not use
any, it is empty per default, or to be precise, it is the dummy type
_tmultirangenull.

e LEN and array_size give the number of elements to store in a vector
of data type elements, normally it is r? and is calculated directly. One
can change this, but one has to make sure then that all accesses by
means of an iterator or index are in a valid range.

Constructors and Destructor:

[01] tmultirange() ;
[02] tmultirange(const multiindex& mi) ;

e [01] is the standard constructor, it is empty.

e [02] initializes the multi-range with the given multi-index.

Data Access:

[o1] const array_type& operator[](unsigned int n) const;
[02] array_type& operator[](unsigned int n);

(03]

[04] const array_type& operator[](const iterator& it) const;
[05] array_type& operator[](const iterator& it);

[06]

[07] multiindex& start():

[o08] const multiindex& start() const;

e [01],[02] realize read and write access to the data in a multirange
with data by means of an integer index.

o [04],[05] realize read and write access to the data in a multirange
with data by means of an iterator index.

e [07],[08] returns the starting point for read and write access.

Supporting Functions:

[01] static const char* version();
[02] static const char* date();

e [01] returns current class version.

e [02] returns last modification date.
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Operators, Input and Output:

01]

tmultirange& operator=(const multiindex& mi);

e [01] sets the starting point of a multi-range to a given multi-index.

start () does the same.

Iterators and Iterator Class Description:

01]
[02]

const iterator begin() const;
const iterator end() const;

e [01] returns an iterator pointing to the first multi-index.

e [02] returns an iterator pointing behind the last multi-index.

[01]
[02]
[03]
[04]
[05]
[06]
[o7]
(o8]
[09]
[10]
[11]

class iterator
iterator();

bool operator==(const iterator& it) const;
bool operator!=(const iterator& it) const;
const iterator& operator++() // prefix

const multiindex& operator*() const;
const multiindex& loopindex() const;
const size_type linear() const;

e [03] is the default constructor. The iterator points to the first multi-

index.
[05], [06] check iterators for equality respectively inequality.
[07] is the prefix increment operator so this is a forward only iterator.

[09] returns the current multi-index, this is the starting point plus the
loopindex (), cf. the example.

[10] returns the current multi-index starting from 0, cf. the example.

[11] returns a counter from 0 to array_size—1 corresponding to the
current multi-index. One can use it to access the data in a multirange
directly by means of operator[], cf. the example.
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3.5.4 Comments

o At present the class tmultirange is restricted to intervals of the same
length r.
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3.6 Multi-d: tpackedltmi

Using the classes tmultiindex or tlevelmultiindex is fast, but inside a
hash-map or another container variables of this kind waste a lot of memory.
This is because from a realistic point of view a maximal level L rarely exceeds
15 and therefore the single indices are in [0,...,2/%* — 1], where s is an
additional offset. Hence it is possible to encode all used information on level
and indices in a smaller data type. This is realized by tpackedltmi.

In this class an additional information is provided, the so called typ. This is
an integer in the range [0,...,2% — 1], when d denotes the used dimension.
The current implementation stores the information in one integer. This shall
be sufficient for d = 1,2. For larger dimensions however one might be forced
to use more than one integer to store the required information.

The classes are declared in igpm_tmulti.h and the associated test program
is igpm_tmulti.test.cpp.

3.6.1 Example

[01] #include "igpm_tmulti.h"

[02] /...

[03] tpackedltmi<2> p(1,0,2,3);

[04] /...

[05] nlLevel = p.level(); // read level

[o6] p-level()=4; // set level to 4
[o7] /...

(o8] nIndex = p.index(1); // read index 1
[o9] p-index(1)=5; // set index 1 to 5
[10] pl1l=5; // does the same

o [03] declares a variable initialized with: level = 2, typ = 0 and multi-

index = (2,3).
e [05],[06],[08][10] read and write the level and one index. Read
access is also possible with p[n].
3.6.2 Data Representation

For the case d = 2 the representation in memory for the example above looks
as follows:
A tpackedlmi<2>:

‘ index[0] ] index[1] ] typ ] level ‘

Bits | 0...12 | 13...25 |26 27128 31l
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3.6.3 Class Description

Template Arguments, Public Types and Constants:

01]
[02]
03]
[04]

template <int DIM>
class tpackedltmi

enum { dim = DIM };

e DIM and dim are the used dimension. At present the class is designed

ford=1,2,3.

Constructors and Destructor:

01]
[02]

03]

[04]

tpackedltmi();

tpackedltmi(unsigned int nLevel, unsigned int nTyp,
unsigned int nIO);

tpackedltmi(unsigned int nLevel, unsigned int nTyp,
unsigned int nIO, unsigned int nIl);

tpackedltmi(unsigned int nLevel, unsigned int nTyp,
unsigned int nIO, unsigned int nIi,
unsigned int nI2);

e [01] is the standard constructor, it is empty.

o [02]-[04] are the constructors for d = 1,2,3, they are contained in

one class for simplicity.

Data Access:

[01]
[02]
[03]
[04]
[05]
[06]
[o7]
(o8]
[09]
[10]
[11]

unsigned int level() const;
_level_typ level();

unsigned int typ() const;
void _typ_typ typ();

unsigned int index(unsigned int n) const;
_index_typ index(unsigned int n);

unsigned int operator[](unsigned int n) const;
_index_typ operator[](unsigned int n);
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o the internal types _level typ, _typ_typ and _index_typ only trigger

the right operator=, so you can write p.level ()=12 with an integer
on the right side.

[01], [02] provide read and write access for the level.

[04], [05] provide read and write access for the typ.

[07], [08] provide read and write access for the indices. The parameter
n is the index which has to be contained in [0,...,d — 1].

[10], [11] read and write index n and just call index(n).

Supporting Functions:

[01] unsigned int link() const;
[o2]

[03] static const char* version();
[04] static const char* date();

e [01] returns level and is used for thashmap linked.
e [03] returns current class version.

e [04] returns last modification date.

Operators, Input and Output:

[o1] bool operator==(const tpackedltmi& i);
[02] operator unsigned int() const;

e [01] compares two packed variables. Because they have the form of
an integers this operation is an ordinary integer comparison.

e [02] returns the packed variable as an integer.

Iterators and Iterator Class Description:

e None.
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3.6.4 Comments

e Currently for every d the last four bits are reserved for the level. That
implies that the level cannot exceed 15. If you have more levels you
have to change the internal distribution of bits or take more than one
integer for the packed data type.

e It is not possible to declare an unsigned int& as return type to write
level, typ or indices because this variables are bit fields. Such a reference
is actually a pointer to an integer location and the information of being
bit fields is lost. This is the reason for the mentioned help classes.
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3.7 Memory Management: tmemheap

The class tmemheap offers a fast way to provide memory space for a variable
of a given type. It is useful to allocating and freeing a lot of variables of the
same type. This works by first allocating a chunk of memory, called heap,
sufficient for a given number of variables of the given type at once. The heap
is able to increase so it is not required to know the exact number of variables
a priori. If one then needs space for a concrete variable, tmemheap provides
an appropriate slice of the heap. The first is done by calling a function similar
to the standard C++ new.

If the type, the tmemheap is instantiated with, needs a constructor, one has
to call it explicitly by means of placement new. This is because the request
for such a new variable returns only a pointer to unused memory in the
heap. The same holds for a destructor, i.e., if one has a class which needs a
destructor one has to make sure that an analogous function is called before
freeing the variable in the memory heap.

The class is declared in igpm_tmemheap.h and the associated test program
is igpm_tmemheap.test.cpp.

3.7.1 Example

[o1] #include "igpm_tmemheap.h"

[02]

[03] tmemheap<unsigned int> h(10,0.5);
[04] unsigned int *pl,*p2;
[05] /...

[06] pl = h.newElem(); *pl = 1;

[o7] p2 = h.newElem(); *p2 = 2;
o8] /...
f09] h.delElem(p2);

o [03] declares a memory heap of 10 unsigned int objects. Every time
the heap is completely filled it allocates space for 10 % 0.5 = 5 more
elements.

e [06],[07] fill the pointers p1,p2 with the allocated positions and store
a value there.

e [09] frees the space from pointer p2.
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3.7.2 Data Representation

The representation of the memory heap h from the above example looks as
follows:

A tmemheap<unsigned int>:

- n pl — - m
bool init 1
p2 —
u.int sizes [5] 2
stack of blocks u.int

free list* { p2 }

u.int counter [4] u.int
*“77,—|—L1 —-m+L2

n, m memory addresses
Ly =sizeof (bool)+(5 + 4)«sizeof (unsigned int)
+sizeof (tstacko)+sizeof (unsigned int*)

Ly = 10xsizeof (unsigned int)

3.7.3 Class Description

Template Arguments, Public Types and Constants:

[o1] template <typename E>

[02] class tmemheap

(03]

[04] typedef E element_type;
[05] typedef unsigned int size_type;

o E and element_type are the data types.

e size_type is unsigned int.

Constructors and Destructor:

[o1] tmemheap (size_type nMinBlockSz = default,
double dAddBlockSz = default,

size_type nMaxBytes = default );
[02] “tmemheap () ;

e [01] is the standard constructor, where nMinBlockSz is the start-

ing size for the heap, given in element units. dAddBlockSz times
nMinBlockSz determines the number of elements for a new memory

42



block if the heap is completely filled. The idea is to guess the maximal
size of the heap a priorly. If that initial size is to small, the size of the
newly allocated memory block is a certain percentage of the initial size.
nMaxBytes is in experimental phase.

Every parameter has an internal default value, so the heap is never in
an undefined state. If you cannot guess the parameters at construction
time use init () at a later time.

o [02] is the destructor, it frees all allocated memory. After calling it
every pointer stemming from a tmemheap variable is invalid.

Data Access:

[o1] element_type* newElem();
[02] void delElem(element_type* pE);

e [01] returns a pointer to a new element.

o [02] frees the element pE. One has to make sure that pE is a pointer
stemming from newElem.

Supporting Functions:

[o1] size_type size() const;

[02] size_type size_local() const;

(03] size_type max_size() const;

[04] size_type max_size_local() const;

[05] size_type capacity() const;

[06]

[o7] void init(size_type nMinBlockSz = default,

double dAddBlockSz = default,
size_type nMaxBytes = default );

[08] void clear();

[09] void reset();

[10]

[11] static const char* version();
[12] static const char* date();

e [01] returns the number of stored elements.

e [02] returns the number of stored elements in the last allocated mem-
ory block.
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[03], [05] returns the maximal number of elements which can be
stored without allocating a new memory block.

e [04]] returns the maximal number of elements in the last allocated

block.

e [07] initializes the heap; for parameter description cf. the constructor.

e [08] frees all allocated memory blocks except the first.
Calling clear() is equivalent to initialize the heap with the same pa-
rameters as before.

e [09] is equivalent to construct or initialize the tmemheap variable with-
out parameters.

e [11] returns current class version.

e [12] returns last modification date.

Operators, Input and Output:

[o1] friend ostream& operator<<(ostream& os,
const tmemheap& h);

e [01] creates an output with information about the tmemheap variable
like the number of allocated elements, free elements and other.

Iterators and Iterator Class Description:

e None.

3.7.4 #DEFINE’s and Errors

#DEFINE’s:
e None.
Errors:

o A size parameter equals 0 gives:
"ERROR (tmemheap): size of new memory is 0”.

e No more free memory gives:
"ERROR (tmemheap): out of memory”.
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3.7.5 Comments

e The copy constructor and the assignment operator are private, i.e., it
is not allowed to copy a variable of type tmemheap.
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3.8 Hashing: thashtab

A hash-map is a data structure to store elements in an unordered way pro-
viding fast access. One can insert and delete elements or ask for existence of
a specific element. The elements of a hash-map can be complex data struc-
tures. The hash-map uses a specified part of this data structure for storage
and access management, called key. The part of its data structure not being
key is called value. However it is possible that the entire data structure is
key, i.e. there is no value. In this case the hash-map works like a mathemat-
ical set. Otherwise it works like a mapping between key and value. Such a
hash-map is called an associative container.

As basis for fast access a hash-map has a very fast function, the hash

function, which maps the range of the keys into an integer range between 0
and some integer, say n — 1. This integer in principle encodes the position of
the key. Usually this operation is not injective, e.g. a modulo function, i.e.,
there are keys which are mapped to the same integer value. This is called a
collision. For choosing a good integer n refer to the Comments 3.8.5.
One design property of a hash-table is the collision strategy. There are various
strategies like choosing a position near the original one, take a second hash
function or link all keys with the same hash value in a list. For our purpose
the latter is sufficient, easy to implement and works very well.

While using a hash-map the fill rate is an important variable. The prob-
ability of collisions depends strongly on n. The larger n, the smaller is the
chance of one value for two keys. To decide whether a key exists already in
a hash-map it has to store the key itself. This can be done, e.g. in a vector
with n elements. If you take into account that a large n makes sense to mini-
mize collisions, storing information in a vector of length n wastes most of the
space. So the solution of this problem is to store only pointers in a vector
to different positions in another container. That implies, together with the
collision strategy, that every position in this vector is the starting point of a
connected list. This vector is called the hash-table. The container to store
the keys and values is for our case the structure tmemheap.

To work efficient with this class it is important to have an initial guess of
the amount of data one wants to store. In this case controlling the fill rate
is easy and the memory usage is more or less optimal. It is often possible to
guess the number of new elements or deleted elements, so this is not difficult
to achieve. Even with a bad guess or no idea of a realistic number the hash-
map works, but the access and all other operations like insert and delete are
noticeable slower.

The class is declared in igpm_thashmap.h and the associated test program
i1s igpm_thashmap.test.cpp.
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3.8.1

[01]
[02]
[03]
[04]
[05]
[06]
[o7]
(o8]
[09]
[10]
[11]
[12]

[13]
[14]
[15]
[16]

3.8.2

Example

#include "igpm_thashmap.h"

typedef thashmap<unsigned int> set;
typedef thashmap<unsigned int,unsigned int> map;
/...

set 5(7,0.8);

map m(7,0.8);

/...

s.on(1); s.on(3); s.on(7); s.on(10);

s.0ff(0); s.0ff(3); s.off(7);

/...

m.insert(1,11); m.insert(3,33); m.insert(7,77);
m.insert(10,101);

m.erase(0); m.erase(3); m.erase(7);

/...

for (set::iterator it=s.begin(); it!=s.end(); ++it)
cout << (*it).key << endl;

[06] declares a hash-map with only keys, a set. There are 7 free
positions in the hash-table and room for 5 elements in the internal
memory heap.

[07] declares a hash-map with keys and values. There are also 7 free
positions in the hash-table and room for 5 elements in the internal
heap.

[09] put the numbers 1,3,7 and 10 into the set s.

[10] delete the numbers 0,3 and 7; for the case 0 nothing happens.
[12] put the listed pairs into the map m.

[13] deletes as in [10].

[16] traverses the hash set. There are only the elements 1 and 10 left.

Data Representation

The hash-table and the heap of the hash-map m from the example above

looks

as follows:
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A thashmap<unsigned int,unsigned int>:

[o] 1 3 7 10
[1] —=> 1 11 3 7 101
[2]
[3] —> 10
[4]
[5]
[6]

MemHeap, b pairs<key,value>

Hast table, 7 pointers

3.8.3 Class Description

Template Arguments, Public Types and Constants:

01]
[02]
03]
[04]
[05]
fo6]

template <typename KEY, typename VALUE=_thashmap_null>
class thashmap

typedef typename pair_type::key_type key_type;
typedef typename pair_type::value_type value_type;
typedef unsigned int size_type;

Because the hash-table needs a data structure for both, key and value,
these types are based on pair type. For a key only hash-table, a set, the
value is empty. As in C++ a class is never empty the implementation
of the type pair makes sure that there is only a key and not even one
byte for a value.

KEY and key_type are the key types.
VALUE and value_type, if given, are the value types.

[06] defines the size type for all indices. It is always unsigned int
but can be changed to another integer typ.

Constructors and Destructor:

01]

[02]

thashmap(size_type nlen = default,
double dFill = default);
“thashmap () ;
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e [01] is the default constructor. The parameter nLen gives the length
of the internal hash-table, i.e., the length of the pointer vector and
the number for the modulo function. dFill is a factor in [0,...,1.0]
to determine the amount of required memory for the keys and values.
The number of free elements in the internal memory heap structure is
nlLen times dFill.

To store for instance 10 elements in a hash-table with a fill rate of 0.5,
you have to call thashmap(10*(1/0.5),0.5).

Because of the default arguments a hash-table is never in an undefined
state.

e [02] is the destructor, it frees all used memory.

Data Access:

[o1] bool find (const key_type& key) const;
[02] bool find (const key_type& key,
value_type& value) const;
(03] bool find (const key_type& key,
value_typex& pvalue) const;
[04] bool erase (const key_type& key);
[05] void insert(const key_type& key);
[o6] void insert(const key_type& key,
const value_type& value);
[o7] void insert(const key_type& key,
value_typex& pvalue);
(o8]
[o9] bool exist (const key_type& key) const;
[10] void off(const key_type& key);
[11] void on(const key_type& key);

o [01] checks if an element with key key exists.

o [02] checks if an element with key key exists and copies the value, if
the hash-table is not a set, into value.

o [03] checks if an element with key key exists and copies a pointer onto
the value into pvalue. This is useful if one only needs parts of the
stored value and wants to avoid the copy process

o [04] deletes an element with key from the hash-map. If there is not
such an element nothing happens.
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[05] inserts a new key key into the hash-map. If there already exists
an entry with this key nothing happens.

[06] inserts a new key key into the hash-map and copies the value
from value. If there already exists an entry with this key the new
value given in value is copied and the value before is lost.

[06] inserts a new key key into the hash-map and copies the pointer
to the value into pvalue.If there already exists an entry with this key
nothing else happens. This is useful if for instance only parts of your
value are calculated and you want to store them directly into the right
position. Hence a copy process is avoided.

[09]-[11] are for convenience only. They call find, off and insert
for a set.

Supporting Functions:

[01]
[02]
[03]
[04]
[05]
[06]
[o7]
(o8]
[09]

size_type size() const;
size_type max_size() const;

void init(size_type nLen = default, dFill = default);
void clear();
void reset();

static const char* version();
static const char* date();

e [01] returns the number of stored elements.

e [02] returns the length of the hash-table, i.e., the maximal number of

elements without having a collision.

[04] initialized a hash-table with the new parameters, cf. the descrip-
tion of the constructor.

[05] clears the hash-table and the internal memory heap but keeps all
given parameters.

[06] initialized a hash-map with its default values.
[08] returns current class version.

[09] returns last modification date.
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Operators, Input and Output:

[01] friend ostream& operator<<(ostream& os, const self& h);
[02] friend ostream& operator<<(ostream& os,
const self::_info_hashstats& ih);

e [01] creates an output with information about the hash-map like the
number of stored elements and much more.

e [02] creates an output with internal information about the number
of linked collision lists. 3->2 (6) means: there are two lists of length
three, hence six elements.

If h denotes a hash-map, call cout << h.info hashelem() ; to get this
information.

Iterators and Iterator Class Description:

The following functions and the class iterator itself are defined only if
IGPM_THASHMAP_ENABLE_ITERATOR is set.

[01] const iterator begin() const;
[02] const iterator end() const;

e [01] returns an iterator pointing to the first element in a hash-map.

e [02] returns an iterator pointing behind the last element in a hash-

map.

[01] class iterator

[02]

[03] iterator();

[04]

[05] bool operator==(const iterator& it) const;
[o6] bool operator!=(const iterator& it) const;
[o7] const iterator& operator++(); // prefix
(o8]

[o9] const element_type& operator*() const;

e [03] is the default constructor, the iterator is undefined.

e [05], [06] check iterators for equality respectively inequality.

e [07] is the prefix increment operator so this is a forward only iterator.
e [09] returns a reference to the internal pair type. One can access the

key and value with (*it) .key and (*it).value.
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3.8.4 #DEFINE’s and Errors

#DEFINE’s:

e IGPM_THASHMAP_ENABLE_ITERATOR (off). If set to on, the iterator class
is defined which is usually not necessary. Refer to 3.8.5.

Errors:

o A wrong initial size gives:
"ERROR (thashmap): size of new memory is 07

e No more memory for the heap or for the hash-table gives:
"ERROR (thashmap): out of memory”

3.8.5 Comments

e An iterator which traverses a hash-map has no list to walk along. It
has to search for the next element in the hash-table, walk the potential
collision list and again search the next element in the hash-table. Be-
cause a hash-table should not be filled up to 100%, the iterator touches
a lot of empty positions to find the next pointer. To traverse a hash-
map often and fast, use a thashmap linked or thashmap linked one,
as described next.

o Choosing the right initial size, i.e., the modulo parameter n for the
hash function, is a little bit tricky.
On one hand a prime number is optimal with respect to the mod-
ulo function but on the other hand calculating an appropriate prime
number for an unknown number of elements is expensive. One good
strategy might be an a priori calculation of a prime table and choosing
the right slot at run time.
Surprisingly, even if the prime number seems to be crucial, is has not
to be. For our project we took the very simple but fast choice

[01] nPrime = nAmount*nFactor; // "Prime"
[02] dFill = 1/nFactor;

which is still sufficient. Here nPrime and dFill denote the parame-
ters for the init function respectively the constructor and nAmount
the number of elements we wanted to store in the hash-map. nFactor
usually equals 3 which implies that the fill rate is about 30%.

One can use this strategy if the time consumption caused by addition-
ally collisions due to a bad ”prime” number is less than that caused by
spotting the right prime number.
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3.9 Hashing: thashtab_linked

The class thashtab_linked is an expansion of thashtab. The main im-
provement is to classify keys into groups, for instance all variables of type
tlevelmultiindex with one level. The new iterator class iterator is able
to traverse all elements with this specific property.

To know which element of the key is the important one to link them together,
the key type needs a function called 1ink(). For the classes tpackedltmi
and tlevelmultiindex this function is implemented and returns the level.
The class is declared in igpm_thashmap.h and the associated test program
is igpm_thashmap.test.cpp.

3.9.1 Example

[o1] #include "igpm_thashmap.h"

[02]

(03] typedef tmultiindex<1l,unsigned int> mi;

[04] typedef tlevelmultiindex<unsigned int,mi> lmi;

[05] typedef thashmap_linked<lmi,unsigned int> map;

[06] /...

[o7] map m(5,7,1.0);

[os] Imi Im_1_1(1,1),1m_1_3(1,3),1m_2_7(2,7);

[09]

[10] m.insert(Im_1_1,11); m.insert(1lm_1_3,33);
m.insert(1m_2_7,77);

[11]

[12] for (map::iterator it=m.begin(1); it!=m.end(1); ++it)

[13] n += (*it).value;

e [07] declares a hash-map with 5 link positions, 7 spaces in the hash-
table and room for 7 elements in the heap.

e [08] declares tlevelmultiindex variables and initializes it with the
level and the 1 dimensional index.

e [10] inserts the keys and values into the map.

o [12],[13] traverses all pairs where the level of the key is 1, i.e., the
values 11 and 33.
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3.9.2 Data Representation

A linked hash-map with some elements may look as follows. There are at
least two elements in the collision list starting at position 0 in the hash-table,
indicated with List 0. On the other hand there are the link lists, indicated
with Level n.

A thashmap_linked<keyT,valueT>:

List 0 :><i: Elem. of KeyT.[,ValueT.] |[List 1 |Level 2
List 1 Elem. of KeyT.[,ValueT.] |List 0 ||Level 1

|
Elem. of KeyT|[,ValueT.] List 0 Y| Level 2

| ....... |

S | |

S | (MemHedp )

L l _

‘LevelO ‘ Levell,‘ Level 2 ‘ e J

(Hashtable) (Levellinks)

3.9.3 Class Description

Template Arguments, Public Types and Constants:

[o1] template <typename KEY, typename VALUE=_thashmap_null>
[02] class thashmap_linked
: public thashmap< KEY,_thashmap_link<VALUE> >
03]
[04] typedef typename basic::size_type size_type;
[05] typedef typename basic::key_type key_type;
[o6] typedef typename basic::value_type value_type;

e The template parameters KEY and VALUE have the same meaning as
in the class thashmap, the internal wrapping in _thashmap link only
triggers a special key value pair

e The same is true for the types.
Constructors and Destructor:

[o1] thashmap_linked(size_type nMaxLinks = default,
size_type nLen = default,
double dFill = default);

[02] “thashmap_linked();
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e [01] is the standard constructor. The first parameter nMaxLinks gives
the maximal number of links, for a description of nLen and dFill cf.
the constructor of thashmap.

o [02] is the destructor. It frees memory from the link management and
calls the base class destructor.

Data Access:

[o1] bool erase (const key_type& key);

[02] bool erase (iterator& it);

(03] void erase (const iterator& beg,
const iterator& end);

[04] void insert(const key_type& key,
const value_type& value);

[05] void insert(const key_type& key,
value_typex& pvalue);

[o6] void insert(const key_type& key);

[07]

(o8] void on(const key_type& key);

[o9] void off(const key_type& key);

e The meanings of [01], [04]1-[09] is the same as in thashmap. There
is nothing new for the user of the hash-map, only internally the class
has to follow all operations to update the links.

e [02] erases the element the iterator refers to. Because the iterator is
invalid afterwards it refers to the element behind the deleted one. One
has to make sure that in a loop the iterator is not incremented twice,
i.e., typical loops looks like

[01] for(iterator it=m.begin(n); it'!'=m.end(n); erase(it))
[02] ;
[03]
[04] for(iterator it=m.begin(n); it!=m.end(n); )
[05] if (condition) erase(it);
else ++it;

e [03] erases all elements from beg (inclusive) to end (exclusive), cf. the
first example above.
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Supporting Functions:

[o1] size_type size() const;

[02] size_type size(size_type n) const;

(03] unsigned int minLevel() const;

[04] unsigned int maxLevel() const;

[05]

[o6] void init(size_type nMaxLinks = default,

size_type nLen = default,
double dFill = default);

[07] void clear();

[o8] void reset();

[09]

[10] static const char* version();
[11] static const char* date();

e [01] returns the number of stored elements.
e [02] returns the number of stored elements of the link n.
e [03] returns the smallest link number, it is always 0.

e [04] returns the maximal number of links, this is the number from the
initialization.

e The meanings of [06]-[08] are the same as in thashmap, except the
first parameter nMaxLinks gives the maximal number of links.

e [10] returns current class version.

e [11] returns last modification date.

Operators, Input and Output:

e Cf. thashmap.

Iterators and Iterator Class Description:

[01] const iterator begin() const;

[02] const iterator end() const;

(03]

[04] const iterator begin(size_type n) const;
[05] const iterator end(size_type n) const;
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[01] returns an iterator pointing to the first element in a hash-map.

e [02] returns an iterator pointing behind the last element in a hash-
map.

[03] returns an iterator pointing to the first element with link n in a
hash-map.

[04] returns an iterator pointing behind the last element with link n
in a hash-map.

The old type iterator_ 1ink is replaced by this iterator class and the func-
tions begin_link and end_link with [04], [05].

[01] class iterator

[02]

[03] iterator();

[04]

[05] bool operator==(const iterator& it) const;
[o6] bool operator!=(const iterator& it) const;
[o7] const iterator& operator++(); // prefix
(o8]

[o9] inline const element_type& operator*() const;

e [03] is the default constructor, the iterator is undefined.
e [05], [06] check iterators for equality respectively inequality.
e [07] is the prefix increment operator so this is a forward only iterator.

e [09] returns a reference to the internal pair type. One can access the
key and value with (*it) .key and (*it).value.

3.9.4 Comments

o It is not allowed to use thashmap as a base class for function calls and
work with thashmap 1inked or thashmap linked one instead. This is
because no functions are defined virtual.

e In this version it is not allowed to use begin(link) and end(1ink) for
different link values, i.e. to use code like

[01] for (iterator it=h.begin(1); it!=h.end(2); ++it)
[02] ; // do something
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Please write it this way

[01] for (unsigned int 1=1; 1<=2; ++1)
[02] for (iterator it=h.begin(l); it!=h.end(1); ++it)
(03] ; // do something

Even if it is possible (and easy) to implement such a behavior, such
an iterator class needs more internal information and therefore it is a
little bit slower. For the frequently case of equal link values this is not

necessary.
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3.10 Hashing: thashtab_linked_ one

The class thashtab linked one is a thashtab linked with only one group
of elements linked together. This is advantageous if one wants to traverse to
the whole hash-map fast, cf. 3.8.5.

The class is declared in igpm_thashmap.h and the associated test program
is igpm_thashmap.test.cpp.

3.10.1 Example

[01]
[02]
[03]
[04]
[05]
[06]
[o7]
(o8]
[09]
[10]
[11]
[12]

#include "igpm_thashmap.h"

typedef tmultiindex<l,unsigned int> mi;
typedef thashmap_linked_one<mi,unsigned int> map;
/...

mi mi_1(1), mi_3(3);
map m(7,1.0);

m.insert(mi_1,11); m.insert(mi_3,33);
/!l ...

for (map::iterator it=m.begin(); it!=m.end(); ++it)
cout << (*it).value << endl;

[07] declares a hash-map with 7 spaces in the hash-table and room for
7 elements in the heap.

[06] declares tmultiindex variables and initializes it with the 1 di-
mensional index.

[09] inserts the keys and values into the map.

[11], [12] traverses all elements. Note, the argument of begin_link
and end_1ink, the link number, is missing.

In this example the key type has no link function unlike the key type
in the example from thashmap linked. This is not necessary because
there is only one link and the linkage is handled internally.

3.10.2 Data Representation

For a data representation see thashtab_linked.
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3.10.3 Class Description

Template Arguments, Public Types and Constants:

[o1] template <typename KEY, typename VALUE=_thashmap_null>
[02] class thashmap_linked_one
: public thashmap_linked<_thashmap_link_one<KEY>,
VALUE>

e The template parameters KEY and VALUE have the same meaning as in
the class thashmap linked.

e For types cf. thashmap and thashmap linked.

Constructors and Destructor:

[o1] thashmap_linked_one(size_type nlen = default,
double dFill = default);

e [01] is the standard constructor, cf. the constructors for thashmap and
thashmap linked. Please have in mind the maximal link number is 1.

Data Access:

o cf. thashmap and thashmap linked;

Supporting Functions:

[o1] void init(size_type nlLen = default,
double dFill = default);

[o2]

[03] static const char* version();

[04] static const char* date();

e [01] initializes the hash-map, cf. thashmap and thashmap_1inked and
have in mind the maximal link number is 1.

e [03] returns current class version.

e [04] returns last modification date.
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Operators, Input and Output:
e Cf. thashmap.

Iterators and Iterator Class Description:

[01] const iterator begin() const;
[02] const iterator end() const;
e [01]

returns an iterator pointing to the first element in a hash-map.

o [02]
map.

returns an iterator pointing behind the last element in a hash-

3.10.4 Comments

o See the comments 3.9.4 in thashmap linked concerning inheritance.
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4 Implementation of Local Multiscale Trans-
formation

In the following we describe the data types that are needed for the imple-
mentation of the Algorithms 2.1 and 2.2 of the local transformations. By
means of these types we declare the data structures and their initialization.
Finally we present some characteristic examples how to work with these data
structures in the context of the local transformations.

4.1 Data Types

Since the multi-scale setting can be applied component-wise to a vector of
functions, i.e., u € L'(€,R™), we consider in the following vectors of averages
w;r € R™ and details dj g € R™. First of all we derive the array types

[o1] typedef tvector_n<double, d> gvector
[02] typedef tvector_n<double, m> uvector
(03] typedef tvector_n<double, 2°d-1> evector
[04] typedef tvector_n<uvector, 2°d-1> dvector

from the template class tvector_n for the storing of vectors & € RY,
averages, details and vectors of details corresponding to all wavelet types
(djk.e)ecr

Since the averages and the details are enumerated by multi-indices k =
(ki,...,k;) € N¢ and level-multi-indices (7, k), we derive the integer arrays

[o1] typedef tmultiindex<d> mi
[02] typedef tlevelmultiindex<mi>  1Imi

from the template classes tmultiindex and tlevelmultiindex, respec-
tively.

For the local transformations we always access simultaneously all non—
vanishing elements of a column of the mask matrices. Therefore it is conve-
nient to agglomerate the indices of the corresponding supports in one data
structure. However, we have not to store index by index, since in the curvilin-
ear case the supports can be represented as a multidimensional integer inter-
val k+[0,7]? C NI characterized by the multi-index k and the interval length
. By this knowledge we designed the special template class tmultirange.
According to the supports of the box function and the wavelets we need four
different types of multi-ranges
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[o1] typedef tmultirange<1, mi> mri

[02] typedef tmultirange<2, mi> mr2
(03] typedef tmultirange<4*s+2, mi> mrés
[04] typedef tmultirange<2*s+1, mi> mr2s

for the supports M;g( Jlk), ?7,0 (g]*,i), ./\/1]1,c and Q;{k, respectively.
Here the first argument specifies the length ¢ and the second argument the
initial index k.

Analogously, we can agglomerate the non—vanishing matrix elements cor-
responding to the columns of the mask matrices by multi-ranges where in
addition to the blocked multi-indices the corresponding matrix elements are
stored whose type is specified by the third argument. Here we distinguish
between the types

[o1] typedef tmultirange<1l, mi, double> mrA_GO
[02] typedef tmultirange<2, mi, double> mrA_MO

for the matrix columns of G, and M o, respectively. In case of the
matrices M., G, € € E*, we proceed differently. By construction the
supports M%, and G, respectively, are the same for all wavelet types e €

E*, only the matrix elements mf,‘;c and gf,‘;c depend on the wavelet type.
Moreover, in the local transformations we always have to access all types
corresponding to an index pair (j,k). Therefore it is more convenient to
agglomerate all matrix elements mf,z, e € F* and gfj;, e € F*, respectively,
in one multirange array

[o1] typedef tmultirange<2*s+1, mi, evector> mrA_M1
[02] typedef tmultirange<4*s+2, mi, evector> mrA_G1

By this we avoid the multiple storing of the index k and the length 7 of
the integer interval.

The mask matrices M ; o, Gjo and M ;1 = (M c)eci*, Gj1 = (Gje)ecn
are then stored in hash-maps where each element is a multirange representing
the non—vanishing matrix elements corresponding to one matrix column

[o1] typedef thashmap_linked<lmi, mrA_MO> 1liMap_MO
[02] typedef thashmap_linked<lmi, mrA_GO> 1liMap_GO
(03] typedef thashmap_linked<lmi, mrA_M1> 1liMap_M1
[04] typedef thashmap_linked<lmi, mrA_G1> 1liMap_G1

Here the first argument of the hash-map represents the type of the key,
e.g. a level-multi-index, and the second argument the type of the value, e.g. a
multirange.

Analogously the local averages w;k, (J,k) € Gre, and the significant
details d; ke, (J, k,€e) € Dy e, are stored in linked hash-maps

63



[o1] typedef thashmap_linked<lmi, uvector> liMap_u
[02] typedef thashmap_linked<lmi, dvector> liMap_d

where each element is either a vector of averages or an array of vectors
representing the details of all components and all wavelet types. We notice
that the index sets 7, ¢ and J; e are implicitly determined by the linked lists
corresponding to the different levels.

The local transformations are performed level by level. To this end, we
need data structures where temporary data corresponding to one level can
be stored. Again we use hash-maps. Since only one level is involved, we can
simplify this type of hash-map. Therefore the data type

[o1] typedef thashmap_linked_one<mi> iSet

uses the template class thashmap_linked_one.

Notice that the hash-map has to be linked, since we have to traverse
through all elements. In particular, the data type iSet is a hash-map where
only keys are stored but no values. This can be interpreted as a set of keys,
e.g. multi-indices.

4.2 Data Structures and their Initialization

By means of the above data structures we now introduce the hash-maps

f01] liMap_MO MO
[02] liMap_M1 M1
[03] 1liMap_GO GO
[04] liMap_G1 G1

for the management of the mask matrices Mo, G;o and M, G,

J=0,..., L —1, as well as the local averages and the significant details
[o1] liMap_u u_map
[02] liMap_d d_map

corresponding to the adaptive grid and the set of significant details.

The initialization of these hash-maps crucially influences the performance
of the computation. We therefore describe the choice of nMax which deter-
mines the length of the hash-table and the size of the memory needed for
storing nMax elements. First of all, we consider the mask matrices. We notice
that the number of elements corresponds to the number of columns of these
matrices, since each element in the hash-map represents the non—vanishing
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matrix coefficients corresponding to one column. For the matrices M, and
M ;i the total number of columns for all levels is determined by

-1 -
Z Nj = Nr— 1
=0 N

where we make use of the relation N; = ¢ N;;;. In case of the matrix G,
we obtain the total number

ZN NLl_q

l—gq

with ¢ =277

For the averages and the details the total number of elements is restricted
by Np for the full grid of the finest level and accordingly all details are
significant, i.e., N1 (1 —¢")/(1 — q).

JFrom the total number of the elements that have to be stored in the
worst case of a uniform refinement over all levels, we determine the number
nMax = nTotal * rFill of predicted elements where rFill denotes the fill
rate. Notice that rFill differs from the fill rate dFill of the hash-table. In
[M] the influence of rFill and nFactor for the performance of the compu-
tation id investigated.

Finally we like to remark that the hash-maps for the mask matrices as
well as the adaptive grid are initialized once and then the length of the hash-
table as well as the memory heap size remain unchanged throughout the
computation. Therefore the choice of rFill is more significant for the mask
matrices and the adaptive grid. In particular, the corresponding hash-maps
require the bulk of memory. This is different for the hash-maps by which the
local averages and the details are stored. Here the length of the hash-table
has to be reinitialized in each time step and the memory eventually has to
be dynamically extended. From the refinement strategy we conclude that
the complexity of the sets Gr, e and Dy, ¢ are related by # Gre = ¢ # D1 e,
since a cell is refined as long as there exists a significant details. Then we can
reinitialize the hash maps u_map and d_map by the actual number of elements
determined by one of the hash-maps with nMax = ¢! # Dy, e for u_map and
nMax = ¢# Gr.e for d_map, respectively.

4.3 Examples

We now present some examples how to use the data types and data structures
derived from the template classes in the context of the Algorithms 2.1 and
2.2. Here we will not outline the whole implementation of these algorithms
but focus on some typical situations:
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Supports. In order to locally perform the two—scale relations (2.1) and (2.2)
as well as (2.3), see step 2, 4 and 5 (Alg. 2.1) and step 2 (Alg. 2.2), we have to
determine the supports of indices corresponding to non—vanishing elements
in a row or column, respectively, of the mask matrices. These are also needed
for the computation of the index sets Cgﬂ l]}, Py as well as [,

storing of a support by means of multi-ranges,

computation of a local index set by means of multi-ranges,

computation and storing of non—vanishing matrix elements correspond-

ing to a row of a mask matrix by means of multirange arrays ,

storing of a mask matrix with respect to the level by means of linked

hash-maps,

performing the local two—scale relations and

deleting of elements in a linked hash-map representing a mask matrix.

step 1 and 3 (Alg. 2.1 and Alg. 2.2, respectively).

01]
[02]

where k is a multi-index of type mi. In case of the supports ./\/1]1,c and g;{k it
is more convenient to realize the computation of these supports by functions.

[01]
[02]
[03]
[04]
[05]
[06]
[o7]
(o8]

mril mr_1
mr2 mr_2

. 1 *,0
[01] . ]‘7k7 M]7k

*,1
[02]: M3y, Gl

mi(k/2);
mi(2*k) ;

-

1

void suppM1(mr_M1& mr4s, int j, const mi& 1) const

{ mi m;

for (int i=0; i<gvector::dim; ++i)

if (k[il<s)

else if (k[il<N[j]1[i]l-s)

else
mr_4s = 2*m;

}
[03]: m[i]l = [,
fos]: N[j1[i] = N,

[o7]: ;k
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[o1] void suppGl(mr_G1& mr2s, int j, const mi& 1) const
[o2] { mi m;

[03] for (int i=0; i<gvector::dim; ++i)

[04] if (k[il/2<s) m[i] = 0;

[05] else if (k[i]/2<N[j][il-s) m[i] = k[i]/2-s;

[o6] else m[i] = N[jI[i]l-1-2%s;
[o7] mr_2s = m;

(o8] }

o [03]: m[i] = [, /2
[ ] [07]: ]OJC

We emphasize that the supports ./\/l;,i and Q;’IS can not be stored in a mul-

tirange, since the interval lengths Zjlkl — Z?k, may differ for each 1 =1,...,d.
Index Sets. For the performance of the two—scale relations (2.1), (2.2) and
(2.3) we have to collect all indices for which the averages w; j and details d; g
as well as the averages ;41 & havetx)kxaconlputed,see‘ﬂjesetsl]?, Cg; Py
and []7:_1, I in Alg. 2.1 and 2.2. These are stored in index sets of type iSet.
Here we consider the computation of the set Cg)as an example.

[01] unsigned int nMax = u_map.size(j+1)/(1<<gvector::dim);

[02] unsigned int nPrime = nMax*nFactor;

[03] double dFill = 1.0/nFactor;

[04]

[05] iSet UO(nPrime,dFill);

[06] mrl mr_1i;

[o7]

(o8] for (1liMap_u::iterator_link it=u_map.begin(j+1);
it!'=u_map.end(j+1); ++it) {

[o9] mr_1 = (*it).key.index/2;

[10] for (mr_1::iterator it2=mr_1.begin() ;

it2!=mr_1.end(); ++it2)
[11] UO.on(*it2);
[12] }
o [08]: U =1

o [09]: My
o [11]: U =U2U M}y
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Matrix columns. For the local transformations (2.1), (2.2) and (2.3) we
have to provide the non—vanishing elements of the columns corresponding to
the mask matrices Mo, G0 and M ;,, G, 1, respectively. These are stored
in multirange arrays by means of the data types mrA_MO, mrA_GO and mrA_M1,
mrA_G1, respectively. In case of the matrices M ;o, G,o the proceeding is
identical. Therefore we present only the realization for the columns of M ;.
Since the computation of the column entries has to be frequently performed,
it is convenient to realize these by a function.

[01] void calcColMO(mrA_MO& mra, const 1lmi& mi)
[02] {
[03] mra = 2*mi.index;
[04]
[05] unsigned int j = mi.level;
[06] double Vcoarse = volume(j,mi.index), V=0;
[07]
(o8] mrA_MO::iterator it=mra.begin();
[09] ++it;
[10] for (; it'=mra.end(); ++it) {
[11] mralit] = volume(j+1,(*it)) / Vcoarse;
[12] V += mralit];
[13] }
[14] it=mra.begin() ;
[15] mralit] = 1.0 - V;
[16]
[17] MO.insert(mi, mra);
[18] }
Here the coefficients n@ﬂi = [Vigrol/IVikl, 7 € M9, are stored in the

multirange array mr of type mrA_MO which is put into the linked hash-map
MO. The volume of a cell is provided by the function volume(. . .) that is not
specified here, since this depends on the explicit representation of the grid.

In case of the matrices M ;; and G;; we proceed differently, since we
store all elements corresponding to the different wavelet types e € E* and
the same position (v, k) in one vector, i.e., (mifjc)eeE* and (gf,’jc)eeE* which
is stored in a multirange array. As an example we consider the columns of
the matrix M ;.

[01] void calcColM1(mrA_M1& mra, const 1lmi& mi)
[o2] {

[03] mr2s mr;

[04] suppM1 (mr2s,mi.level,mi.index);

[05]
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[06] mra = mr2s.start();

[07] for (mrA_M1::iterator it2=mra.begin();
it2!=mra.end(); ++it2)

[o8] for (int 1=0; 1<dvector::dim; ++1)

[09] mralit2][1] = ... ;

[10]

[11] M1.insert(mi, mra);

[12] }

e [08]: loop on e € E~

e [09]: matrix element n@?i

Here we do not present the explicit computation of the matrix elements mf,z,
e € F*, since this involves the construction of appropriate wavelets which is
not subject of this paper. The multirange array mra of type mrA_M1 is finally
stored in the linked hash-map M1.

Two—scale relations. By means of the above structures the two-scale
relations (2.1), (2.2) and (2.3) can be realized. Here we only present the
implementation of (2.1) which can be interpreted as a coarsening of the grid,
since cells are agglomerated.

[o1] void coarsen(const iSet &UO, int j)

[02] {

[03] double mkr;

[04] uvector ujk, ujlr;

[05] bool bFlag;

[06] mrA_MO mra;

[07]

(o8] for (iSet::iterator_link it=U0.begin_link();
it!=U0.end_link(); ++it) {

[09] bFlag = MO.find(1mi(j, (*it) .key), mra);

[10] if (!'bFlag)

[11] calcColMO(mra,lmi(j, (*it) .key));

[12] ujk = 0.0;

[13]

[14] for (mrA_MO::iterator it2=mra.begin();
it2!=mra.end(); ++it2) {

[15] bFlag = v.find(1mi(j+1,*it2), ujir);

[16] mkr = mralit2];

[17] ujk += mkr*ujir;

[18] by

[19] u_map.insert(Imi(j, (*it) .key), ujk);
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[20] ¥
[21] ¥

Before we can perform the summation in step 2 of Algorithm 2.1, we first
have to check whether all non—trivial mask coefficients mf,(;c corresponding to
the kth column of M ;4 are provided by the linked hash-map MO. If they have
been stored, then we have to get these elements stored in a multirange array
from the hash-map. Otherwise, we first have to compute these information
by the function calcColMO(...). Then we can determine the averages @, €
R™ and store this vector in the linked hash-map u_map.

Matrix reduction. If we perform the multi-scale transformation and its
inverse several times within one computation, e.g. in the context of a finite
volume discretization these transformations have to be performed after each
time step, the matrix columns which have not been accessed in the current
application should be discarded in order to optimize the memory size. The
discarding of mask matrix elements is realized by the steps 6, 7 and 4, 5 in
the Algorithms 2.1 and 2.2, respectively. As an example we consider here

M.

[01] unsigned int nMax = MO.size(j)/10;

[02] unsigned int nPrime = int(nMax#*nFactor);

[03] double dFill = 1.0/nFactor;

[04]

[05] iSet tmpI(nPrime,dFill);

[06] mi  k;

[07]

(o8] for (1iMap_MO::iterator_link it=MO.begin(j);
it!=MO.end(j); ++it) {

[o9] k = (*it).key.index;

[10] if ( '( UO.exist(k) || d_map.exist(Imi(j,k)) ) )

tmpI.on(k);

[11] }

[12]

[13] for (indexSet::iterator it2=tmpI.begin();

it2!'=tmpIl.end(); ++it2)
[14] MO.erase(1lmi(j, (*it2) .key));

First we declare a temporary index set tmpI. This hash-map is initialized
by nMax which is assumed to be 10 % of the existing columns on level j. Then
we traverse through all existing columns and check whether the column index
is an element of the index set U0 or corresponds to a significant detail, i.e.,
J;e. If this is not the case, then the index is added to the index set tmpI.
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Finally we delete all multirange arrays in the linked hash-map MO associated
to the indices in the index set tmpI.
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5 Internal Structures and Remarks

In this chapter we want to discuss some difficulties that arose during the
designing of appropriate data structures for the project Adap2D.

5.1 Why not Expression Templates?

After a motivating example we describe the idea behind Expression Tem-
plates and discuss situations where these technique is suitable. In the end
we explain why we did not use such a library, e.g. the Blitz library, but the
non Expression Template vector class tvector_ n instead.

In an ordinary vector class an expression like the following

[01] vl = v2+c*v3; // v1,v2,v3 vectors, c scalar

produces a lot of temporary variables during its evaluation. This is due to
the fact that required operators like operator+ or operator* which work
on vectors return their results in a variable of type vector. This temporary
vector is only needed as input for the next operator in the evaluation process.
After delivering the value the variable is deleted.

Additionally most of the common vector operators have to traverse their
arguments because vector operations are usually operations on every coeffi-
cient. Thus during the evaluation process a lot of loops are performed.

The solution to get rid of these two drawbacks is a technique called Fz-
pression Templates. The main idea is to build an expression tree with objects
acting like an operator on scalars and to evaluate these tree in one loop at
the end, e.g. in operator=. A simple analogue looks as follows

[01] for (i=0; i<n; ++i)
[02] vi[i] = v2[i]+c*v3[i];

where the mathematical expression is scalar and only one loop has to be
performed to calculate v1i. In the above expression there are temporary
objects as well but these are not of type vector. They are of type scalar,
so there is a good chance for most machines to store them into processor
registers and it is not necessary to call constructors and/or destructors. That
speeds up the evaluation significantly. In principle this situation is mimicked
by Expression Templates.

However, the situation is not as perfect as it sounds, because to be efficient
Expression Templates depends heavily on good compiler optimization. To
be precise, there are also temporary objects building the expression tree.
Without going into details fewest of them are really necessary to evaluate
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the expression. They exist only to generate function calls to scalar operators
in the right order. It depends on the compiler how many of these temporary
objects are created. Unfortunately not every compiler is capable of good
optimization and for this case one will get overhead again.

If the number of long vector expressions is small in a program the tem-
porary variable problem is not that relevant. But in any case working with
vectors generates a lot of loops. Some compilers have an option to unroll
small loops but that the compiler uses it on specific code can not be guaran-
teed.

The class tvector n is a compromise. There are temporary objects stem-
ming from an operator in a vector expression but there won’t be even one
loop. This is guaranteed by a recursive template technique which generates
an unroll code sequence for sure. Moreover it works independently from the
compiler optimization and one only needs a compiler capable to deal with
recursive templates in general. More details are given in 5.2.

A priori it is hard to say whether it is necessary to use an Expression

Template library or not. For our project Adap2D it was not, because only a
few long vector expressions are computed. The loop factor was much more
crucial so it was sufficient to use the simpler tvector n. Be aware of the
fact that an Expression Template library takes a lot of compile time so in
any case it might be appropriate to use a fast compiling vector class during
the development process. If the interfaces are fixed they can be replaced by
Expression Templates later on.
In particular, for Adap2D we get a speedup of a factor 2-3 in time for
exchanging a dynamical length vector class with a fixed length one, i.e.,
tvectorn. In contrast we get no further improvements for exchanging this
vector class with the Blitz library but again we want to emphasize that this
will be different for every project.

5.2 A Note on Template Specializations

A technique we mentioned before is recursive template instantiation. We
used this to implement unrolling of our vector operations in tvectorn.
The basic idea is contained in the following simple example which calculates
B"E for integer B,E at compile time:

[01] template <unsigned int B, unsigned int E>
[02] struct math {

(03] enum { pot = B*mathi1<B,E-1>::pot };
[04] s

[05]
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[06] template <unsigned int B>

[07] struct math<B,0> {

(o8] enum { pot = 1 };

[09] };

[10]

[11] // use:

[12] const unsigned int n = math<5,2>::pot; // 572 = 25

The starting point for calculating the enum pot is [03]. At this point the
compiler generates the class math<B,E-1> and if E equals 0 it takes the
specialization in [08] 2.

5.2.1 Template Specializations in tvectorn

In principle the specialization is analogous to the example above.

[o1] template <typename DBL, int nr>
[02] struct _tvector_n_ops {
[03] static void _set(DBL v[], const DBL& d)
[04] { vlnrl=d; _tvector_n_ops<DBL,nr-1>::_set(v,d); }
[05] /...
[06] static void _add(DBL v[], const DBL v1[], const DBL v2[])
[o7] { vinrl=vi[nrl+v2[nr];
_tvector_n_ops<DBL,nr-1>::_add(v,v1,v2); }
(o8] /...
[o9] template <typename DBL>
[10] struct _tvector_n_ops<DBL,0> {
[11] static void _set(DBL v[], const DBL& d)
[12] { vlol=d; }
[13] /...
[14] static void _add(DBL v[], const DBL v1[], const DBL v2[])
[15] { v[0]l=vi[0]+v2[0]; }
[16]
[17] // use in
[18] self& operator=(const dbl& d)
[19] { _tvector_n_ops<dbl,dim-1>::_set(m_d,d);
return *this; }
[20] //
[21] friend tvector_n operator+(const tvector_n& vi,
const tvector_n& v2)
[22] { tvector_n v;

2 A nice exercise is to program the calculation of the square root of an integer by means
of template specialization.
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_tvector_n_ops<dbl,dim-1>::_add(v.m_d,vi.m_d,v2.m_d);
return v; }

The helping class for tvectorn is _tvector n ops. [18] and [21] contain
representatively the member operator operator+ and the friend operator
operator= which call the template helping class. m_d denotes the begin of
the internal vector field.

5.2.2 Template Specializations in tmultirange and thashmap

Both classes tmultirange and thashmap have an optional template para-
meter. This parameter, an arbitrary data type, decides whether to store
additional information to each element in the container or not. In the case
of tmultirange it is an array of this data type associated to one multi-index
and in the case of thashmap it is a value associated to a key.

The basic idea to implement this is to declare a helping template data type
to store the coupled information and a specialization of this helping tem-
plate data type without the additional information. The class tmultirange
and thashmap contain a member of this helping data type instantiated with
the used optional template parameter. To trigger the specialization of the
helping data type one only has to add a default template argument. The
following example illustrates this in principle.

[o1] struct _dummy_help { };

[02]

(03] template <class DBL, class ADD>

[04] struct help_class {

[05] DBL d;

[06] ADD a;

[07] };

o8]

[o9] template <class DBL>

[10] struct help_class<DBL,_dummy_help> {

[11] DBL d;

[12] };

[13]

[14] template <class DBL, class T=_dummy_help>
[15] struct myclass {

[16] help_class<DBL,T> m_hc;

[17] };

[18]

[19] myclass<double> mcl; // only double
[20] myclass<double,int> mc2; // double and int
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In [19] the default value _dummy help is implicitly used and the specializa-
tion in [10] is instantiated. In [20] the additional information is of type
int so the helping class is the one in [04] containing a double and an int.

The helping class in tmultirange is called _tmultirange data. The
slightly more complicated implementation for the class thashmap of the help-
ing class _thash pair contains a nested specialization needed for the linked
hash-map case but the technique is still the same.

5.3 Triggering the Right Operator
Motivating problems:

e Have a look at the following example:

[o1] struct S {

[02] unsigned int _x : 10;

(03] unsigned int& x() { return _x; }

[04]

[05] S s;

[06] s.x() = 12; // -> error, no address available

One wants to store a value in a bit field, e.g. as in tpackedltmi, but
there is no reference to a bit field and a write operator like the one in
[03] does not work.

e One has a complex data structure like tmemheap or thashmap and writes
an output operator operator<< for general information of the con-
tainer. Additionally one wants to have another possibility for some
internal output on a stream. A member function like

[o1] void output(ostream& os) { ... }
is not appropriate because one likes to write something like
[01] cout << "Map " << h << ", " << h.internal() << endl;

but the standard output operator is occupied already.

The solution of both problems is very similar: One has to trigger the right
operators.

Assume both x() and internal () return a variable of an internal data type
instead of the desired type. Then another operators with different argument
types are required. The following example deals with the second problem:
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[01]
[02]
[03]
[04]
[05]
[06]
[o7]
(o8]
[09]
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]

struct C {
int m_internal;

struct _int {
_int(const C& c¢) : m_c(c) { }
const C& m_c;

};

friend ostream& operator<<(ostream& os, const C& c)
{ os << "general "; return os; }

_int internal() const { return _int(*this); }

friend ostream& operator<<(ostream& os, const _int& i)
{ os << "data " << i.m_c.m_internal; return os; }

// use
C c;
cout << ¢ << "," << c.internal() << endl;

The triggering function is [12]. It returns a temporary variable of the inter-
nal type and therefore [14] is called. Note that the internal typ _int has to
store the data source, i.e., the variable of type C itself. As all references are
const there is a good chance for a compiler to optimize the code.

Similar techniques can be found in the standard libraries iostream and

lomanip.

5.4

Comments

e A name space igpm is planed but not realized at present.

o All library classes memorize their template type arguments or con-

stants, if any, in typedef’s or enum’s. While using this classes as tem-
plate arguments of other template classes one is able to refer to the
saved information.

For instance, tmultiindex is a possible template argument for the
class tmultirange and the used vector dimension dim of tmultiindex
can be addressed in tmultirange without explicitly given as a further
template argument.

No tests with respect to exceptions have been performed, i.e., per de-
fault none of the classes can be considered as exception save.
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6 Sources and Applications

A current version and additional information are available from

http://www.igpm.rwth-aachen.de/ voss
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